
Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

Using the Skype Client as a
Server Platform

A Connectotel White Paper

Prepared by
Marcus Williamson

Connectotel
London, UK

http://www.connectotel.com/
marcus@connectotel.com

Created: 1 March 2005
Last Edited: 8 May 2005

http://www.connectotel.com/
http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

Contents

1.0 INTRODUCTION ..3

2.0 ARCHITECTURE MODELS ..3

2.1 CLIENT-SIDE...3
2.2 SERVER-SIDE ..4
2.3 CLIENT/SERVER..4

3.0 THE SKYPE CLIENT AS A “SERVER”..5

3.1 SERVER CONCEPTS..5
3.2 CONFIGURATION...6
3.2.1 CALL AND CHAT MESSAGE NOTIFICATIONS ...6
3.2.2 AUTHORIZATION REQUESTS ...7
3.2.3 SOUNDS...7
3.2.4 ‘ADVANCED’ OPTIONS...8

4.0 ACCESS CONTROL MECHANISMS..8

4.1 CONTACTS LIST ..8
4.2 AUTHORIZATION...9
4.3 BLOCKED USERS ..10
4.4 EXTERNAL ACCESS CONTROL ...10

5.0 STATUS INFORMATION...10

5.1 LOGGING..10
5.2 STATUS COMMANDS ...11
5.3 REMOTE ACCESS ..11

6.0 FAULT TOLERANCE...11

6.1 DETECTING THE PRESENCE OF THE SKYPE CLIENT ..11
6.2 AUTOMATING START-UP ...12
6.3 STANDBY SERVER ...12

7.0 LEGAL ...13

8.0 CONTACTS ...13

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

1.0 Introduction

Skype offers a rich Application Programming Interface (API) for the Skype client software.
The “Skype Access API” provides developers with the ability to process Voice over Internet
Protocol (VoIP) calls and to intercept Instant Messaging (IM) chat messages, as well as
being able to query the Skype user directory and locally-held Contacts list.

The architecture model for application development most often used so far has been the
“client-side” model, in which the application software is downloaded and installed by the
end-user to operate in conjunction with the user’s Skype client.

Another model, less frequently used, is a “server-side” model where the application runs on
a machine somewhere within the Skype network. Until recently the only service which used
this model was the Skype “test123” service, which echoes back a message to the user. The
recently introduced ‘SMS to Skype’ and ‘Skype to SMS’ services, offered by Connectotel,
are an example of this model, providing added functionality via a virtual user which has the
Skypename “smsgateway” within the Skype network.

For certain applications a hybrid “client/server” model may be used, where part of the
application runs “client-side” and the other “server-side”.

The following document is intended for application designers and developers who wish to
create services running as virtual users on the Skype network, running as either “server-
side” or “client/server” applications.

This paper will not discuss in detail the design or development of the application written
using the Skype API, as this subject is already covered in the Skype API documentation
and online resources.

2.0 Architecture Models

2.1 Client-side

In the first few months of existence of the Skype API, developers for the Skype platform
have focussed their efforts on creating add-in applications which will run on the end-user’s
computer system, interacting with the Skype client there. These applications typically
provide some supplemental functionality to the Skype client, for example in the form of an
answering machine or call-forwarding capability.

When using this type of software product, the user is required to download a software
package and install it on their own computer. Once installed, the software provides its
functionality by interacting with the Skype client software, intercepting voice calls and/or
instant messages, or interacting with the Skype user directory, depending on the
application.

The advantage of this model is that the software is deployed directly onto the user’s client
machine and uses the resources of that machine to carry out all processing. This in turn
could also be seen as a disadvantage, in that the application developer is potentially
supporting the entire community of users who are using the application, with consequent

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

demands on time and resources for the developer. When an application such as this
requires updating to a later version, the user is required to download and reinstall the
software.

This application architecture we shall call “client-side” for the purposes of this paper.

2.2 Server-side

A second model for developing applications is what we shall call here a “server-side” model.

In this case the “user” is a machine which is providing some specialised functionality to
other users within the Skype peer-to-peer network, such as a gateway to an external non-
Skype instant messaging system, or a link to an external data feed.

When using this type of service, the software developed typically runs on only one “server”
machine within the entire Skype network and does not require any software to be installed
onto the end-user’s machine. In some cases the workload may be shared between two or
more machines. For example, in the case of
incoming and outgoing SMS messages, one
machine might be configured to handle the incoming
traffic and the other to handle outgoing traffic. The
user will perceive one “service”, but that service is
being provided by two “server” machines within the
Skype network.

The user would communicate with one machine,
named for example “skype-to-sms”, to send SMS
messages and the other machine, named for
example “sms-to-skype”, would be responsible for
handling the traffic originating as an SMS message.

When the user wishes to use the service provided by the application, he/she initiates a
voice call or starts an instant message chat session with the “server” machine. The machine
then carries out the necessary action and provides responses generated by a program
running in conjunction with the Skype client, written using the Skype API.

The advantage of the “server-side” model is that the application exists in just one location.
There is no software required on the client and therefore less of a resource requirement for
support and maintenance of the software. In the event that modifications are required to the
application, these are carried out in one place, on the server machine.

2.3 Client/Server

The third model, which we shall call “client/server”, is where part of the application is
running “server-side” and another part runs “client-side”. In this model, the application’s
intelligence is shared between the front-end and back-end, with both components
cooperating to achieve the required task.

The client/server model provides a means to add functionality alongside the existing Skype
user interface. For example, in the ‘Skype to SMS’ application already cited, a possible

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

enhancement would be to add an application at the client side which allowed the user to
choose a target user, from the Skype directory, then type a message for transmission to the
target user’s mobile phone. The message would then be passed via the Skype chat
functionality to the backend server for processing. No applications of this type yet exist for
Skype.

This model has the advantage of the “server-side” model, in that the main backend
application exists in just one location. However, in also having a “client-side” software
component, the developer will be subject to the disadvantages of that model in terms of
potentially supporting and maintaining software on a large number of end-user machines.
This model also raises questions of version control, where the front-end and back-end
components must decide on a common command set to use. This issue can be resolved
relatively straightforwardly by carrying out a version-checking handshake process when the
“client-side” and “server-side” components first start to communicate.

3.0 The Skype client as a “server”

3.1 Server concepts

When using the Skype client as a server for an application, the developer will use the Skype
Access API in the normal way, just as he/she would do with a “client-side” application. The
calls and/or chat messages will arrive from Skype users, who may be located anywhere
within the Skype network.

As the call or chat message arrives, the server may verify the user’s status (see section 4.0
below) then carry out the necessary processing of the incoming data. After completion of
processing, the server will hand any results back to the requesting client.

As a simple example, let us consider a server which has been developed to provide
currency exchange rate information. In this application the data flow would be:

• User starts a chat session with the “exchange rate” server and types the currency
symbol required, for example USD (US Dollar).

• The “exchange rate” server receives the chat message containing “USD”
• The “exchange rate” server looks up the current currency exchange rates for the US

Dollar from a file received via an external data feed.
• The “exchange rate” server sends back the results to the requesting user as a chat

message.

The developer can, of course, incorporate additional intelligence into the software, such as
replying to the user in their own language, based on the user’s profile language, or tailoring
the information in the reply to any information in the user’s profile such as their country,
gender or birthdate.

It is recommended for applications using the Skype chat facility, which do not have a client-
side portion, that the developer incorporates a HELP command, which can be used to
inform the user about how to interact with the server. The HELP command would
summarise the commands available, together with the syntax for those commands.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

3.2 Configuration

The Skype client is designed to provide a user-friendly interface to the Skype transport for
VoIP and IM services.

For an ordinary user, the interface provides ongoing information about the status of calls,
chats and the online and authorization status of Contacts. However, when used as a server
there are a number of notifications, pop-ups and alerts which may interfere with server
operation, reduce performance and clutter the screen. These are:

• Call and Chat message notifications
• Authentication Requests
• Sounds
• ‘Advanced’ Options

3.2.1 Call and Chat message notifications

The following screenshot from Options / Call Alerts shows how to disable unnecessary
pop-ups and sounds, for server operation, when receiving calls. All checkboxes in this case
are unticked, so as to disable pop-up windows, sounds, automatic answering and
notification in the system tray.

The following screenshot from Options / Chat Alerts shows how to disable unnecessary
pop-ups and sounds, for server operation, when receiving chat messages. Again, all
checkboxes are unticked, so as to prevent the chat window and taskbar icon from popping
up and disable the sound alert and the notification in the system tray.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

3.2.2 Authorization Requests

The screenshot above also shows how to disable the pop-up for an incoming authentication
request, by unticking the checkbox “Automatically pop up incoming authentication request
window”. When this checkbox is unticked, the authentication request will not prompt the
user but will instead be saved as an “Authorization Waiting” which is displayed in the Skype
client “Start” window. The concept of Authorization is discussed further in section 4.2 below.

3.2.3 Sounds

Disabling sounds can reduce the processor utilization on systems intended for “server” use.
This screenshot shows all three “play sound” notification checkboxes unticked to disable the
sound in each case:

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

3.2.4 ‘Advanced’ Options

Within the Advanced options there are two settings which can help reduce the load on
“server” systems. These are:

“Close call tab after a completed call” – This should be ticked
and
“Display Online Notifications in the system tray” – This should be unticked

Both these settings are shown in the screenshot here:

4.0 Access Control Mechanisms

The following access control mechanisms are available to the application developer who
wishes to make use of the native Skype functionality for access control on a “server-side”
system:

• Contacts List
• Authorization
• Blocked Users

Alternatively, the developer may choose to use his/her own mechanism for providing
access control.

4.1 Contacts List

The Skype Contacts list is also known as the “Friends” list or “Buddy” list. On a conventional
“client” configuration, this is list of contacts with whom the user may communicate regularly.
In a server environment, the administrator adds entries into the Contacts list by using the
menu option Tools / Add a Contact or by adding the user into the Contacts list when
prompted to “authorize this user”.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

To be entered onto the Contacts list, a user should request authorization from the
Skypename which is running the “server” application. Once the administrator receives the
authorization request he/she may choose whether or not to add the user to the list of
authorized user’s for this Skypename. If the administrator accepts the authorization request
then the user will be added to the Contacts list for the server.

When using the Skype client in a server configuration, the Skype API can be used to
determine whether a user is in the Contacts list of the server machine by testing the user
property BUDDYSTATUS using the command:

GET USER username BUDDYSTATUS

The possible return values for this command are:

0 The user has never been in the Contacts list
1 The user was in the Contacts list but has been deleted
2 The user is pending authorization
3 The user is in the Contacts list

(See section 7.8.3 of the Skype API documentation)

The “Contacts List” option can be used to build up a limited list of Alpha Test or Beta Test
users who are permitted to use the service, by ensuring that only those users who have
“BUDDYSTATUS 3” be granted access. In this way, the developer can maintain control of
who will use the application for the duration of the testing cycle.

4.2 Authorization

The Skype API can be used to determine whether a user is authorized on the server
machine by testing the user property ISAUTHORIZED using the command:

GET USER username ISAUTHORIZED

(See section 7.8.3 of the Skype API documentation)

This command returns either TRUE or FALSE depending on whether the user is authorized.
Being “authorized” means that the user is able to see the online status of the virtual user
with which the server is associated.

The “Authorization” option can be used on its own, or in conjunction with the Contacts list,
to control access to a server machine.

Note: It is important to be aware that granting authorization within the Skype client is
currently a manual process for which no APIs exist. This implies a potentially large amount
of work for personnel who will have to grant or deny authorization one-by-one to the users
who request it.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

4.3 Blocked Users

The ability to block users can be useful in the event that one or more users attempts to
abuse a server facility. The Skype client allows maintenance of a list of blocked users via
the menu option Tools / Manage Blocked Users.

Once added to the Blocked Users list, communications from the blocked user will no longer
be seen by the Skype Client, nor indeed by the Skype API. The block is absolute, but
reversible in the event that the user should be again allowed to communicate with the
server.

The Skype API can be used to determine whether a user is blocked from accessing the
server machine by testing the user property ISBLOCKED using the command:

GET USER username ISBLOCKED

(See section 7.8.3 of the Skype API documentation)

This returns either TRUE or FALSE depending on whether the user is blocked.

4.4 External Access Control

As well as the methods indicated above, which are built into the Skype client, the developer
may decide to implement his/her own external access control mechanisms. This would
typically involve building a list of known allowed users of the service, then comparing the
Skypename of the incoming user with the list of allowed users and granting or denying
access accordingly.

Specialised access control mechanisms might involve allowing access based on a user’s
geographical location and/or language. In this case the developer can make use of the
user’s profile information to determine these parameters.

5.0 Status Information

It will be important for organisations offering a service on the Skype network to provide a
means for local and/or remote monitoring of the server system. There are a number of ways
in which this could be carried out including:

• Logging
• Status Commands
• Remote Access

5.1 Logging

Logging will provide the developer with historical information about the status of the server
application and its interaction with users. When building a server application for Skype, it
may be useful to log to a file all Skype API messages sent and received to assist with
diagnosis of any problems which may occur. If this is done, it is recommended that the
Skype API LASTONLINETIMESTAMP messages are omitted from the log, unless these are

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

required by the application. Doing this will considerably reduce the amount of data which
will be stored in the log. An application developer may choose to filter other, non-essential
messages in a similar way.

5.2 Status Commands

The developer may choose to incorporate status commands into his/her application. This
would return administrator statistics, or other data, in response to a given command. For
example, in the currency “exchange rate” server mentioned in section 3.1, the developer
might implement a command STATUS which returned:

Server up since: 1 April 2004, 12:35:33
Current date/time: 28 February 2005, 18:34:23
Last data feed received: 28 February, 18:30:18
Number of currencies recognised: 88
Number of requests processed: 6745

The use of the STATUS command could be restricted for use only by those users who are
in the server’s Contacts List, in which case the Contacts List on the “server” system could
be used to store a list of recognised administrators for the server.

An alternative to providing status information on demand in this way is to write status
information to a web page on a web server. This status page can then be queried by a
remote administrator when required, using a web browser.

5.3 Remote Access

If the server is located outside of the developer’s normal office environment, for example at
a hosting facility, then it may be necessary to provide remote access to the server machine.
The Skype client cooperates well with remote access solutions such as PCAnywhere and
VNC. Using this type of software the developer can interact with the application and the
Skype client exactly as if he/she were sitting next to the server machine.

6.0 Fault Tolerance

6.1 Detecting the presence of the Skype client

An application can determine whether the Skype client is present and connected to the
Skype network by issuing the command PING, to which the response, if all is well, is
PONG.

(See section 7.9.8 of the Skype API documentation)

In the event that the Skype client is not present, an application can launch the Skype client
using the ShellExecute function, or similar, depending on the programming language being
used.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

6.2 Automating start-up

It is recommended that the Skype client and server-side software be made to start
automatically in case a server reboots spontaneously or has been powered off inadvertantly
and restarts. The server-side software can be started automatically if it is running as a
Windows service, or via a shortcut in the Windows Startup folder.

The Skype client software can be started automatically by ticking the checkbox shown in
the screenshot below. It is recommended that the option “Check for updates automatically”
be unticked so that the Skype client startup process is not interrupted by a prompt to update
the Skype client software. If an update to the Skype software is required, this can be
managed by the administrator manually.

6.3 Standby server

In the event that a server system experiences a hardware or software failure, it will be
useful to have a standby server available as a replacement. This server should be
configured as similarly as possible to the production system, including the Skype client
software, application software and configuration options shown in section 3.0 above.

This machine could be a “warm” standby, in which case it already exists on the network
under another Skypename, but is not normally available. Alternatively, as a “cold” standby,
it is a machine which is normally powered off but is a “clone” of the production server.

When using a “warm” standby, manual intervention will be required to bring the new server
online. This will involve logging out the existing “server” machine under its normal
Skypename and then using that same name to log in the standby machine.

A “warm” standby, using a different Skypename, could also be brought in as a production
server in the event of routine maintenance on the usual production server.

http://www.pdfpdf.com

Using the Skype Client as a Server Platform – Copyright © 2005 Connectotel

7.0 Legal

This paper is copyright © 2005 Connectotel Ltd

The name Skype and the Skype logo are Trademarks of Skype Technologies S.A.

If using Skype as a server, please make contact with Skype to determine whether doing so
is within the terms of the End-User License Agreement (EULA).

Screenshots are taken from Skype version 1.1. The appearance of the Skype version you
are using may be different.

8.0 Contacts

Marcus Williamson, Connectotel
http://www.connectotel.com/
E-mail: marcus@connectotel.com

http://www.connectotel.com/
http://www.pdfpdf.com

